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We show that when firms have incomplete information about the market demand and
their costs, a (Bayesian) Cournot equilibrium in pure strategies may not exist, or be unique.
In fact, we are able to construct surprisingly simple and robust examples of duopolies
with these features. However, we also find some sufficient conditions for existence, and
for uniqueness, of Cournot equilibrium in a certain class of industries. More general results
arise when negative prices are possible.
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1. Introduction

The Cournot model is widely used in studies of imperfectly competitive industries. Its standard version, which is con-
cerned with the case of firms producing a homogeneous good with complete information about demand and production
costs, has been extensively studied. However, in the past thirty years a fairly big amount of research has been dedicated to
questions that arise when the information is incomplete, i.e., when there is uncertainty about the market demand and/or
the firms’ cost functions, and firms have asymmetric information about them. (See, e.g., Gal-Or (1985, 1986), Raith (1996),
Sakai (1985, 1986), Shapiro (1986), Vives (1984, 1988, 1999), and Einy et al. (2002, 2003).)

In oligopolies with incomplete information, some of the questions that have been addressed concern the value of infor-
mation to a firm (that is, whether and by how much a firm can benefit from receiving additional information), as well as
firms’ incentives to share information. Treating these questions involves comparisons of the pure strategy Bayesian Cournot
equilibrium outcomes in industries that differ with respect to the information endowments of the firms. The scope of these
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exercises is thus limited to classes of industries for which an equilibrium exists.1 Moreover, sharp and general conclusions
are hard to obtain unless an equilibrium is also unique under various information endowments of the firms.

For a complete information oligopoly, the conditions for existence of a Cournot equilibrium that are found following
the topological approach guarantee that the best response correspondences of the firms are closed graphed and convex-
valued. For instance, if the inverse demand is a decreasing concave function, and firms’ cost functions are convex, then a
firm’s payoff is a concave function of its own output, and under standard continuity assumptions the Nash Theorem yields
equilibrium existence (see Szidarovszky and Yakowitz, 1977). In general, mere quasi-concavity of each firm’s payoff in its
own output and continuity of firms’ payoff functions suffice to obtain existence.

An alternative approach to establishing existence of a Cournot equilibrium in the complete information case is to study
conditions under which firms’ output decisions are strategic substitutes, i.e., the best response correspondence of a firm is
decreasing in the output of the other firms. This feature together with the aggregation property of firms’ payoffs (i.e., a firm’s
payoff depends only on its own output and on the aggregate output of all other firms) imply that the composite best
response correspondence has a fixed point. This approach was pioneered by Novshek (1985), who establishes existence
of equilibrium under a quite general condition on the inverse demand, and with minimal assumptions (monotonicity and
continuity) on costs. Novshek’s condition on the inverse demand requires that the marginal revenue of a firm be a decreasing
function of the aggregate output of the other firms, and this indeed implies that firms’ outputs are strategic substitutes.

Novshek’s work spurred later developments (see Vives, 1990; Kukushkin, 1994; Amir, 1996), which adopted the lattice-
theoretic framework and tools to study conditions for strategic substitutes and for existence of fixed points. (We may thus
term this method of establishing equilibrium existence the lattice approach.) Vives (1990) noted that Novshek’s condition
is equivalent to the (cardinal) submodularity of the payoff function of each firm in its own output and on the aggregate
output of other firms. Amir (1996) shows that log-concavity of the inverse demand ensures by itself that payoff functions
are (ordinally) submodular.2 Since both types of submodularity imply strategic substitutes, existence of equilibrium in a
duopoly can be established using Tarski’s fixed point theorem.3 Existence of equilibrium in oligopolies with more than two
firms can be established using a more sophisticated fixed-point theorem due to Kukushkin (1994).

In oligopolies with incomplete information, the issues of existence of a (pure strategy) Bayesian Cournot equilibrium have
been largely bypassed in the literature by making strong assumptions. For instance, Gal-Or (1985), Vives (1984, 1988), and
Raith (1996) assume that the market demand is uncertain and linear, and allow the possibility that negative prices may
arise for large outputs, in order not to break the linearity of the demand function. In other works (see, e.g., Sakai, 1985),
incomplete information is assumed only on firms’ linear costs, which again allows to avoid the general problem of equilib-
rium existence. In a non-linear setting, Einy et al. (2003) derive conditions under which the value of public information in
an oligopoly is either positive or negative, but assume that the firms are symmetrically informed, which allows to reduce
the equilibrium existence question to that in a complete information oligopoly. The assumption of symmetry of information,
and a reduction to the complete information case that it allows, also stand behind the existence result of Lagerlöf (2006).
In Einy et al. (2002) a categorical approach is used: it is assumed that an equilibrium exists, and then its properties are
investigated.

In this work we study conditions under which a Bayesian Cournot equilibrium exists, and is unique, in an oligopoly
with incomplete information. As noted, quasi-concavity and ordinal submodularity are two very general properties of the
payoff functions that are conducive to equilibrium existence in the complete information case. In the incomplete information
scenario, however, if these properties are assumed to hold state-by-state, then they do not usually imply the corresponding
properties of the expected payoff function. We thus confine ourselves to conditions on the primitives of the model that
imply stronger properties of the payoff functions in each state (convexity or cardinal submodularity), at least on a certain
range of output levels.

We will assume that prices are non-negative in every state of nature. (A model in which prices may be negative in some
states of nature is less appealing; in Section 4, however, we consider this case as well.) Requiring that prices be always
non-negative is far from being just a modeling nuance. Rather, it may change the strategic interaction in the oligopoly in a
crucial way, and may lead to equilibrium non-existence even in well-behaved industries.

We present examples of duopolies with differential information without a Bayesian Cournot equilibrium, where, notably,
the market demand and cost functions in every state of nature have properties that under complete information would have
led to equilibrium existence. In our Examples 1 and 2 the inverse demand is a decreasing linear or concave function in each
state of nature, which is truncated where it intercepts the horizontal axis so as to preserve the non-negativity of prices; the
costs are linear too. In addition, the information structure is very simple: one firm is better informed than the other. Yet,
these industries possess no Bayesian Cournot equilibrium.

The reason for equilibrium non-existence in our examples is the following. Without truncating the demand, we would
have had concavity of the expected payoff function of each firm in its output, and existence of equilibrium could have been
established by standard arguments. However, with a truncated demand, the payoff functions in each state of nature are

1 Throughout the paper we restrict attention to pure strategy equilibria. Existence of a mixed strategy Cournot equilibrium in an oligopoly does not
present a problem under either complete or incomplete information (see Remark 6 in Einy et al., 2007), and will not be taken as an issue here.
2 More precisely, each firm’s payoff function satisfies the condition of reverse single crossing property of Amir (1996) with respect to its own output and

the aggregate output of the other firms.
3 See Theorems 1.1 and 1.2, and Corollary 2.2, respectively, in Amir (1996).
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only quasi-concave. This would have sufficed to obtain equilibrium existence in the complete information case, but with
incomplete information quasi-concavity of the state-dependent payoff functions does not necessarily translate into the same
property of the expected payoff function, as was mentioned already. Indeed, in our examples the expected payoff function
of the least informed firm is not quasi-concave. In both examples the demands can be approximated by smooth curves that
do not intersect the horizontal axis, with the expected payoff function remaining non-quasi-concave.

In the industries defined in Examples 1 and 2 a Bayesian Cournot equilibrium exists if the demand is not truncated (and
thus negative prices are possible).4 In terms of firms’ incentives, the reason why these equilibria cease to be such when
the demand is truncated is simple: whereas deviations from equilibrium to large outputs are deterred by the possibility of
negative prices, when the demand is truncated such deviations may become profitable. Indeed, if a firm has high-demand
and low-demand states in a certain information set, and the possibility of negative prices is ruled out, it is sometimes
profitable to increase output in that information set. This deviation will increase revenue in high-demand states, but lead
only to limited losses in low-demand states, where the revenue cannot fall below zero.

The simplicity and robustness of Examples 1 and 2 indicate that Bayesian Cournot equilibrium existence with always
non-negative prices is a much scarcer phenomenon than existence when negative prices are allowed to arise (and thus
also scarcer than the existence in the complete information case).5 When negative prices are possible (which is admittedly
somewhat less interesting), equilibrium exists quite often. In this case, linearity or concavity of the inverse demand, or
more generally Novshek (1985) condition or concavity of the monopoly revenue, can be assumed to hold for all possible
aggregate outputs at every state of nature, which guarantees a good behavior of the expected payoff functions as well (e.g.,
concavity in each firm’s strategy, or cardinal submodularity6). This can be used to establish equilibrium existence in the
possibly negative prices scenario by arguments similar to those of the topological and lattice approaches in the complete
information case, as we do in our Theorems 1A and 1B.

If one insists on always non-negative prices, then, typically, linearity or concavity of the inverse demand or Novshek’s
condition cannot hold on the entire R+ . Imposing these conditions only until the state-dependent inverse demand reaches
zero, and then truncating it, is but one way to guarantee always non-negative prices. Other adjustments to the above
conditions that would leave the prices always non-negative are of course conceivable, but in all cases the expected payoff
functions are likely to lose properties conducive to equilibrium existence, compared to the scenario of possibly negative
prices (just as it occurs in oligopolies in Examples 1 and 2). Nonetheless, we characterize a certain class of oligopolies with
incomplete information in which a Bayesian Cournot equilibrium does exist – see Theorems 2A, 2B and Corollary 1. The key
feature of this class is the existence of certain thresholds of output which no firm will ever desire to exceed, and which
guarantee positive prices in every state of nature if firms adhere to them. (Existence of such thresholds is guaranteed if
firms’ marginal costs increase sufficiently fast.)

On the front of uniqueness, it turns out that even a simple duopoly may have multiple Bayesian Cournot equilibria –
see Example 4. However, we show that in an oligopoly with two types of firms in which one type has superior information,
whenever a Bayesian Cournot equilibrium exists, it must be unique – see Theorems 1C and 2C.

The rest of the paper is organized as follows. Section 2 describes the set-up. Section 3 contains examples of oligopolies
with incomplete information that possess no Bayesian Cournot equilibrium. Section 4 presents equilibrium existence and
uniqueness results when possibly negative prices are allowed in the oligopolies, while Section 5 is dedicated to general
results in oligopolies with always non-negative prices. Proofs of all results are given in Appendix A.

2. Cournot competition with incomplete information

Consider an industry where a set of firms, N = {1,2, . . . ,n}, compete in the production of a homogeneous good. There
is uncertainty about the market demand and the production costs. This uncertainty is described by a finite set Ω of states
of nature, together with a probability measure µ on Ω, which represents the common prior belief of the firms about the
distribution of the realized state.7 The information of the firms about the state of nature may be incomplete: the private
information of firm i ∈ N is given by a partition Π i of Ω into disjoint sets. For any ω ∈ Ω, Π i(ω) denotes the information
set of i given ω, that is, the element of Π i that contains ω. W.l.o.g., we assume that µ has full support on Ω, and in
particular that µ(Π i(ω)) > 0 for every i ∈ N and ω ∈ Ω.

If qi(ω) denotes the quantity of the good produced by firm i in state ω ∈ Ω, and Q (ω) ≡ ∑n
i=1 q

i(ω) is the aggregate
output in ω, then the profit of firm i in ω is given by

4 Despite this possibility, prices in an equilibrium are positive in every state of nature.
5 Note that in the complete information scenario, truncation of the inverse demand does not affect equilibrium existence, since the firms know where

prices are positive and hence their best responses only lead to aggregate outputs corresponding to positive prices, or are zero (assuming positive marginal
costs). Thus, only the positive, untruncated, part of the inverse demand function is relevant, and the firms’ best responses are the same with or without
truncation. All results on existence in the complete information case therefore apply equally to truncated or non-truncated inverse demand.
6 These cardinal properties, if satisfied in every state by the state-dependent payoff function, are preserved by the expectation operator, and thus the

expected payoff functions inherit them. As we noted above, this is not the case with quasi-concavity. Similarly, we do not consider Amir (1996) condition
of log-concavity of the inverse demand at each state of nature as a possible replacement/generalization of the Novshek (1985) condition, since ordinal
submodularity of the payoff function in each state that it implies is not necessarily preserved by the expectation operator.
7 The assumption that Ω is finite is not necessary, and is made only to simplify the presentation – see Remark 2.
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ui(ω,
(
q1(ω), . . . ,qn(ω)

))
= qi(ω)P

(
ω, Q (ω)

)
− ci

(
ω,qi(ω)

)
,

where P (ω, ·) is the inverse demand function in ω, and ci(ω, ·) is the cost function of firm i in ω.
We assume throughout that:

(i) For every ω ∈ Ω and i ∈ N, ci(ω, ·) is continuous and ci(ω,0) = 0 (thus, there are no fixed costs).
(ii) For every ω ∈ Ω, P (ω, ·) is non-increasing, and for every ω ∈ Ω there exists a level of aggregate output Q (ω) ∈ [0,∞]

such that for every Q < Q (ω)

P (ω, Q ) > 0,

and

P
(
ω, Q (ω)

)
= 0

if Q (ω) < ∞. When Q (ω) is finite, it is referred to as the horizontal demand intercept in ω.8

(iii) There exists a level of output Z < ∞ such that for every i ∈ N, q ! Z and ω ∈ Ω

qP (ω,q) − ci(ω,q) " 0; (1)

i.e., in every state of nature each firm’s monopoly profit is non-positive when its output exceeds Z . If Q (ω) < ∞ for
every ω ∈ Ω , and cost functions are non-decreasing, one may take Z ≡ maxω∈Ω Q (ω). Also, if the monopoly revenue
function qP (ω,q) has a maximum and the cost functions are strictly increasing and convex, such a Z exists.

A (pure) strategy for firm i is a function qi : Ω → R+ that specifies its output in every state of nature, subject to mea-
surability with respect to i’s private information (i.e., qi is constant on every information set of firm i). The set of strategies of
firm i will be denoted by Σ i . Given a strategy profile q = (q1, . . . ,qn) ∈ ∏n

j=1 Σ j the expected profit of firm i is

U i(q) = E
[
ui(·,

(
q1(·), . . . ,q1(·)

))]
.

A strategy profile q∗ ∈ ∏n
j=1 Σ j a (pure strategy Bayesian) Cournot equilibrium, if no firm finds it profitable to unilaterally

deviate to another strategy, i.e., if for every i ∈ N and qi ∈ Σ i

U i(q∗) ! U i(q∗
∣∣ qi

)
, (2)

where (q∗ | qi) stands for the profile of strategies which is identical to q∗ in all but the ith strategy, which is replaced by qi .
This is equivalent to requiring

E
(
ui(·,q∗(·)

) ∣∣ Π i(ω)
)
! E

(
ui(·,

(
q∗ | qi

)
(·)

) ∣∣ Π i(ω)
)

(3)

for every ω ∈ Ω. Here E(g(·) | A) stands for the expectation of a random variable g conditional on event A.

3. A Cournot equilibrium may not exist: examples

In this section we present two simple examples of duopolies with incomplete information for which a Cournot equi-
librium does not exist. Example 1 concerns a duopoly where, in each state of nature, the firms’ cost functions are linear,
and the inverse market demand is a decreasing linear function which is truncated where it reaches zero, to ensure always
non-negative prices. Surprisingly, when firms’ have incomplete information, existence of a Bayesian Cournot equilibrium
cannot be guaranteed even in this simple setting. (Note that in such a setting a Cournot equilibrium exists when firms have
complete information.)

Equilibrium non-existence in Example 1 is driven by the asymmetry in firms’ information about the demand inter-
cept Q̄ .9 The linear inverse demand of Example 1 is modified in Example 2 (where it is piecewise linear and concave) to
show that a Cournot equilibrium may fail to exist even if the intercept Q̄ is known to both firms (in fact, in this example
Q̄ is the same in all states of nature).

Example 1. Consider the following duopoly with incomplete information. The set of states of nature Ω consists of just two
states, ω1 and ω2. The probability of ω1 is 1

4 , and the probability of ω2 is 3
4 . Firm 1 is informed about the realized state of

nature, while firm 2 has no information about it; i.e., Π1 = {{ω1}, {ω2}} and Π2 = {Ω}. The inverse demand function is

P (ωi, Q ) = max
{
1− b(ωi)Q ,0

}
, (4)

8 A demand intercept arises in standard complete information models with a linear or concave inverse demand function. Existence of a demand intercept
is consistent with (and usually implied by) Novshek’s condition – see Remark 5.1 in Novshek (1985).
9 In fact, Example 3 in Section 5 shows that a linear duopoly where the demand intercept is known to both firms does possess a Cournot equilibrium.
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where b(ω1) = 1
4 and b(ω2) = 1. Thus, both P (ω1, ·) and P (ω2, ·) are linear till they reach zero, at which point they are

truncated and set to be equal to zero. This ensures that the prices are always non-negative: in the state ωi the inverse
demand function P is positive on [0, Q̄ (ωi)), and is zero for Q ! Q̄ (ωi), where Q̄ (ω1) = 4 and Q̄ (ω2) = 1. The marginal
costs of firm 1 are c1(ω1) = 2 and c1(ω2) = 1

100 . Firm 2 has a constant marginal cost c2 = 1
100 in both states of nature.

Since the marginal revenue of firm 1 in ω1 is always below its marginal cost, maximizing profits entails that firm 1
produces zero in this state. Thus, in looking for an equilibrium we restrict attention to those strategies of firm 1, q1 ∈ Σ1,
that prescribe producing zero in ω1; i.e., q1 can be identified with a scalar x ≡ q1(ω2) ∈ R+. Also, since firm 2 does not
know the realized state, a strategy of firm 2, q2 ∈ Σ2, must specify the same output in both states of nature; i.e., q2 can be
identified with a scalar y ≡ q2(ω1) = q2(ω2) ∈ R+ . Accordingly, the strategies of firms 1 and 2 will be regarded as scalars
x,y ∈ R+. By identifying firms’ strategies with scalars x, y we have in effect converted the incomplete information duopoly
into a complete information game where the payoffs are the firms’ expected profits.

In order to understand the source of the existence problem in this example, we begin by showing that if the demand
functions are not truncated, and hence prices may be negative, then the industry has a Cournot equilibrium. We proceed
then to modify the analysis to account for the impact of truncating the demand, and we show then that no Cournot equilib-
rium exists in the industry. Therefore, assume for the moment that the inverse demand is

P−(ωi, Q ) = 1− b(ωi)Q , (5)

and for (x, y) ∈ R2
+ denote by U i

−(x, y) the corresponding payoff of firm i ∈ {1,2}. Since firm 1 only produces in ω2, we
have

U1
−(x, y) = 3

4

(
P−(ω2, x+ y)x− x

100

)
.

The payoff of firm 2 is

U2
−(x, y) = P̄ x

−(y)y − y
100

,

where

P̄ x
−(y) = 1

4
P−(ω1, y) + 3

4
P−(ω2, x + y)

is firm 2’s “expected residual inverse demand.”
Firms’ reaction functions are

R1
−(y) = max

{
1
2

(
99
100

− y
)

,0
}
,

and

R2
−(x) = max

{
198
325

− 6
13

x,0
}
,

and therefore (x∗, y∗) = ( 99
400 , 99

200 ) is the unique Cournot equilibrium. Fig. 1a shows the state-dependent residual inverse
demand functions, and the expected residual inverse demand function, faced by firm 2. Fig. 1b shows the payoff of firm 2
given that firm 1 produces the equilibrium output x∗ = 99

400 . Fig. 1c shows firms’ reaction functions.
We modify now the analysis to account for the demand truncation, i.e., we revert from (5) to (4). Fig. 2a shows a graph

of the residual inverse demand functions faced by firm 2. The expected residual demand faced by firm 2 is now

P̄ x(y) = 1
4
P (ω1, y) + 3

4
P (ω2, x+ y);

i.e.,

P̄ x(y) =






P̄ x
−(y), if x+ y < 1;

P̂ (y), if 1 " x+ y and y " 4;
0, i f y > 4,

where

P̂ (y) = 1
4

(
1− y

4

)
.

Note that P̄ x(y) is not a concave function. Firms’ payoffs are given for (x, y) ∈ R2
+ by

U1(x, y) = 3
4

(
P (ω2, x + y)x − x

100

)
(6)
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(a)

(b)

(c)

Fig. 1.
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(a)

(b)

(c)

Fig. 2.
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and

U2(x, y) = P̄ x(y)y − y
100

. (7)

Fig. 2b shows the graph of U2(x, ·) for x = 99/100. (The graph of U2(x, ·) has a similar form for every x.) Note that U2(x, ·)
is non-quasi-concave, despite the fact that the state-dependent payoff functions are quasi-concave; and that it has two local
maxima. The local maximum of U2(x, ·) on the left is given by

max
y

{
P x

−(y)y − y
100

}
= max

y

{
U2

−(x, y)
}

= U2
−
(
x, R2

−(x)
)
.

The local maximum of U2(x, ·) on the right is firm 2’s maximum payoff when the price in state ω2 is zero, given by

max
y

{
P̂ (y)y − y

100

}
= 144

625
.

The smallest solution to the equation

U2
−
(
x, R2

−(x)
)
= 144

625
,

is x̄ = 33
25 − 8

25

√
13 ≈ 0.16622. It is easy to see that for x < x̄ the local maximum of U2(x, ·) on the left (i.e., y = R2

−(x)) is
the global maximum of U2. For x > x̄ the local maximum of U2(x, ·) on the right (i.e., y = 48

25 ) is the global maximum of
U2(x, ·) – that is, in this case firm 2 is better off choosing the output that maximizes its profit in ω1, letting the price be
zero in ω2.

Firm 1’s reaction functions is R1(y) = R1
−(y), and firm 2’s reaction correspondence is given by

R2(x) =






R2
−(x), if x " x̄;

{R2
−(x̄), 48

25 }, if x = x̄;
48
25 if x ! x̄.

A graph of firms’ reaction functions is given in Fig. 2c. The jump of R2 at x̄ is caused by the change of the global
maximizer of U2(x, ·) from y = R2

−(x) to y = 48
25 . Thus, the best response correspondence R2 is not convex-valued. As the

graphs of R1 and R2 show, these functions do not cross, and therefore a Cournot equilibrium does not exist.

In Example 1, firm 2’s lack of information about the demand intercept Q̄ leads to a non-concave expected residual
inverse demand function, as shown in Fig. 2a. As a result, the expected revenue of firm 2 is not quasi-concave in its own
output, and its reaction correspondence is not convex-valued. This causes equilibrium non-existence. However, as we shall
see in Section 5, Example 3, a linear duopoly where Q̄ is known to both firms does possess a Cournot equilibrium.

Next we present an example of a duopoly in which the demand intercept Q̄ is the same in all states of nature (and
hence known to both firms), but nonetheless a Cournot equilibrium does not exist. This duopoly is a variation of that
described in Example 1: here the inverse demand function in ω1, P (ω1, ·), is piecewise linear and concave on [0, Q̄ ].
Unlike in Example 1, here the expected demand faced by firm 2 is concave on [0, Q̄ ] when the firm is a monopoly, i.e.,
when the output of firm 1 is zero. However, this does not extend to the expected residual demand in general. Despite the
good properties of the inverse demand function, the expected residual inverse demand of firm 2 is not concave on [0, Q̄ ]
for a considerable range of positive outputs of firm 1 – see Fig. 3a. As a result, the expected payoff function of firm 2 is not
quasi-concave, see Fig. 3b, in its own output, which ultimately leads to non-existence of a Cournot equilibrium, see Fig. 3c.

Example 2. Consider an industry identical to that of Example 1 except for the demand in ω1, which is given here by

P (ω1, Q ) =






1, if Q " 99
100 ;

100(1− Q ), if 99
100 < Q " 1;

0, if Q > 1.

The demand intercept is now constant, Q̄ (ω1) = Q̄ (ω2) = 1, and thus known to both firms.
The expected residual inverse demand faced by firm 2, P̄ x(y), is given by

P̄ x(y) =






1
4 + 3

4 (1− x− y), if x+ y " 1 and y " 99
100 ;

1
4100(1− y) + 3

4 (1 − x− y), if x+ y " 1 and 1 ! y > 99
100 ;

1
4 , if x+ y > 1 and y " 99

100 ;
1
4100(1− y), if x+ y > 1 and 1 ! y > 99

100 ;
0, otherwise.
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(a)

(b)

(c)

Fig. 3.
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Note that for 1
100 < x < 1 the function P̄ x(y) is not concave on [0,1], even though the demand intercept is the same in both

states. Fig. 3a shows the graphs of the state-dependent residual inverse demands in that case, and the expected residual
inverse demand.

Let (x, y) ∈ R2
+. As in Example 1, since firm 1 produces zero in ω1 its payoff is

U1(x, y) = 3
4

(
P (ω2, x + y)x − x

100

)
. (8)

Firm 2’s payoff is

U2(x, y) = P̄ x(y)y − y
100

.

Fig. 3b shows graphs of firm 2’s expected payoff U2(x, ·) for x = 22/100. Note that U2( 22
100 , ·) is not quasi-concave. (This

stands in contrast to the case of firm 2 being a monopoly: U2(0, ·) is a quasi-concave function, which is, moreover, concave
on [0,1].)

The reaction function of firm 1 is also as in Example 1, whereas firm 2’s reaction function is now

R2(x) =






33
50 − 1

2 x, if x " x̄;
{ 3350 − 1

2 x̄,
99
100 }, if x = x̄;

99
100 , if x ! x̄

for x ∈ R+. Here x = 33
25 − 6

25

√
22 ≈ 0.1943 is the smallest solution of the equation

max
y

{(
1
4

+ 3
4
(1 − x− y)

)
y − y

100

}
= max

y∈[0, 99
100 ]

{
1
4
y − y

100

}
.

Fig. 3c shows the graphs of firms’ reaction functions. Since firms’ reaction functions do not cross, a Cournot equilibrium
does not exists in this industry.

In both Examples 1 and 2, the demand functions can be made smooth, and such that they do not intersect the horizontal
axis in either state, while preserving the form of firm 2 expected profit function. These examples are suggestive of the
difficulty in finding natural conditions on the primitives of the model, analogous to those found for the complete information
case, that guarantee existence of a Cournot equilibrium when information is incomplete.

4. Cournot equilibrium when negative prices are possible

In this section we show existence of Cournot equilibrium under two assumptions which are standard in the complete
information framework (see Theorems 1A and 1B below). These assumptions do not rule out the possibility of negative
prices in some states of nature for sufficiently large aggregate outputs, and this possibility can play an important role in
guaranteeing equilibrium existence. Indeed, as was pointed out in Example 1, a Cournot equilibrium exists in the linear
oligopoly described there if the inverse demand is not truncated at zero and thus allowed to receive negative values.
Similarly, not truncating the concave inverse demand function in Example 2 would also lead to equilibrium existence.

Although the possibility of negative prices might not be very meaningful in most contexts, this section is still valuable
because its results can also be applied to certain classes of strictly positive inverse demand functions – see Remark 1.
Furthermore, the results presented here (and their proofs) will be instrumental in the next Section 5, where conditions of
this section are combined with an explicit requirement of always non-negative prices.

The following condition on the inverse demand is akin to the collation of (2) and (3) in Theorem 3 in Novshek (1985):

(A) For every ω ∈ Ω, P (ω, ·) is twice continuously differentiable and satisfies

Q P ′′(ω, Q ) + P ′(ω, Q ) " 0 (9)

for every Q ∈ R+. (At Q = 0 we have in mind the right-side derivatives of P and P ′.)

Inequality (9) in condition (A) is equivalent to the requirement that the marginal revenue of a firm be decreasing in
the aggregate output of the other firms. It is satisfied, e.g., by all decreasing, concave, and twice continuously differentiable
inverse demand functions.

Theorem 1A. A duopoly that satisfies (i)–(iii) and (A) has a Cournot equilibrium.

When the firms’ cost functions have additional standard properties, we can consider condition (B) below, which is weaker
than (A) (since the inverse demand is a non-increasing function).
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(B) For every ω ∈ Ω, P (ω, ·) is twice continuously differentiable and the monopoly revenue function Q P (ω, Q ) is concave,
i.e.,

Q P ′′(ω, Q ) + 2P ′(ω, Q ) " 0 (10)

for every Q ∈ R+.

Theorem 1B. An oligopoly that satisfies (i)–(iii) and (B), and in which ci(ω, ·) is convex for every i ∈ N and ω ∈ Ω, has a Cournot
equilibrium.

Theorems 1A and 1B are natural counterparts of results on existence of Cournot equilibrium that have been obtained in
the literature in the complete information case (see, e.g., Novshek, 1985, and Szidarovszky and Yakowitz, 1977). It is the
nice behavior of the expected payoff functions that stands behind equilibrium existence in our theorems. Indeed, the proofs
reveal that under condition (A) the profit function of each firm is cardinally submodular in its output and the aggregate
output of the other firms, and if the firms’ cost functions are convex (as in Theorem 1B), then the expected profit function
of each firm is concave in its strategy – see Section 6.1 in Appendix A. Both concavity and cardinal submodularity imply
existence of a Cournot equilibrium via known methods (that we dubbed the “lattice” and the “topological” approaches in
Section 1).

Theorem 1A considers only duopolies. This is because it is not known whether cardinal submodularity of the expected
payoff functions implies equilibrium existence when there are more than two firms (except when the strategy sets are one-
dimensional, see Kukushkin, 1994). However, when convexity of cost functions is assumed, as in Theorem 1B, existence of
a Cournot equilibrium is guaranteed for any number of firms.

As was already mentioned, any non-increasing, twice continuously differentiable and concave P (ω, ·) satisfies condi-
tion (A), and thus satisfies condition (B) too. It might be tempting to contemplate an alternative to (A) or (B) that would
require that each P (ω, ·) be log-concave. Such condition is used by Amir (1996) to prove existence of Cournot equilibrium in
a duopoly when information is complete. However, this does not appear to be a viable alternative, since the log-concavity of
P (ω, ·) only implies the reverse single crossing property of the state-dependent revenue function, and this property would
not typically be passed to the expected revenue function.

With a decreasing and concave P (ω, ·), prices are negative for aggregate outputs exceeding Q (ω). In fact, condition (A)
usually implies (see Remark 5.1 in Novshek, 1985) the existence of a finite demand intercept Q (ω) such that prices are
negative for aggregate outputs exceeding it. Theorems 1A and 1B may thus appear to be of limited interest. However,
Remark 1 identifies an interesting class of inverse demand functions that satisfy (B) (albeit not the stronger (A)) and are
strictly positive. In Section 5 we consider explicitly the implications of imposing the condition that the inverse demand be a
non-negative function.

Remark 1. The class of inverse demand functions of the form

P (ω, Q ) =
(

b(ω)

Q + c(ω)

)a(ω)

,

where 0 < a(ω) < 1 and b(ω), c(ω) > 0 for all ω ∈ Ω, satisfy condition (B). These functions, which are often used in
applications, are strictly positive.

Condition (A), combined with assumptions on the inverse demand and cost functions that are stronger than our main-
tained assumptions (i) and (ii), allows us to establish uniqueness of Cournot equilibrium for certain information structures.
Specifically, we assume that there are two types of firms, one of which possesses superior information (i.e., has a finer infor-
mation partition). Condition (U) formalizes this assumption:

(U) The set N of firms can be partitioned into two disjoint sets, K and M, such that 1 ∈ K , 2 ∈ M, and such that Π i = Π1,

ci = c1 for every i ∈ K , Π j = Π2, c j = c2 for every j ∈ M, and Π1 is finer than (or equal to) Π2.

Theorem 1C. Consider an oligopoly satisfying conditions (i), (iii), (A) and (U), and such that for every ω ∈ Ω, P (ω, ·) is strictly
decreasing, and each ci(ω, ·) is strictly increasing, twice continuously differentiable and convex for i ∈ N. Then it has a unique Cournot
equilibrium.

Even though it is possible to dispose of assumption (U) following the arguments of the proof of Theorem 2 in Hon-Snir
et al. (2007), we chose to present here a weaker version of the uniqueness result, since its proofs extends easily to the case
of non-negative inverse demand functions considered in Section 5. In this latter case existence of superior information is
indispensable for equilibrium uniqueness, as will be demonstrated in Example 4.
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5. Cournot equilibrium with always non-negative prices

In the previous section we established existence of a Cournot equilibrium under conditions (A) or (B). Although we
presented (in Remark 1) a class of oligopolies with positive demand functions for which (B) holds, it is common for a
smooth inverse demand function satisfying (B) (and even more so for a demand satisfying (A)) to become negative for
sufficiently large levels of aggregate output. (This is also the case in the complete information setting – see Remark 5.1 in
Novshek, 1985.) If the inverse demand is then truncated to rule out non-negative prices, existence of a Cournot equilibrium
cannot be guaranteed even in duopolies with linear or concave inverse demand functions, as seen in Examples 1 and 2.

In this section we discuss the case of non-negative inverse demand functions, and present additional existence and
uniqueness results. The simplicity of the demand functions in Examples 1 and 2 indicates that it is difficult to find natural
conditions on the primitives of the oligopoly that would guarantee equilibrium existence. Our existence Theorems 2A and 2B
and Corollary 1 rely on conditions stated directly as properties of firms’ profit functions.

Consider a non-negative inverse demand function P , i.e., a function that satisfies P (ω, Q ) ! 0 for all ω ∈ Ω and Q ∈ R+ .
Since for every ω ∈ Ω, P (ω, ·) is non-increasing by assumption (ii), for Q ! Q (ω) we have

P (ω, Q ) = 0. (11)

(Recall that Q (ω) is the horizontal demand intercept.) Of course, we may have Q (ω) = ∞, as in the class of inverse demand
functions described in Remark 1. But, if Q (ω) is finite, then (11) implies that the inverse demand is fixed at zero beyond
the demand intercept Q (ω).

The analogs of Novshek’s condition (A), or the revenue concavity condition (B), will now be used in conjunction with
the requirement that the inverse demand be a non-negative function. These conditions must now be restated in the form
that makes them consistent with (11). (In what follows, the conditions and assumptions on derivatives of P (ω, ·) refer to
one-sided derivatives at the endpoints of the interval [0, Q (ω)].10)

(A′) For every ω ∈ Ω, P (ω, ·) is a non-negative function that is twice continuously differentiable on [0, Q (ω)] and satisfies
Q P ′′(ω, Q ) + P ′(ω, Q ) " 0 for every Q ∈ [0, Q (ω)].

(B′) For every ω ∈ Ω, P (ω, ·) is a non-negative function that is twice continuously differentiable on [0, Q (ω)] and satisfies
Q P ′′(ω, Q ) + 2P ′(ω, Q ) " 0 for every Q ∈ [0, Q (ω)].

The following condition is used in Theorems 2A and 2B below.

(C) There exists a profile of state-dependent thresholds of output q ∈ ∏n
i=1 Σ i such that for every ω ∈ Ω

n∑

i=1

qi(ω) " Q (ω), (12)

and for every strategy profile q ∈ ∏n
i=1 Σ i and every i ∈ N there exists a strategy ri " qi such that11

U i(q) " U i(q | ri
)
. (13)

Intuitively, condition (C) implies that each firm i does not want to produce too much, since by reducing its output
below the level qi its expected profit does not decrease.

The following two results are the counterparts of Theorems 1A and 1B in Section 4, stated now for oligopolies with
always non-negative prices.

Theorem 2A. A duopoly satisfying conditions (i)–(iii), (A′) and (C) has a Cournot equilibrium.

Theorem 2B. An oligopoly satisfying conditions (i)–(iii), (B′) and (C), and such that ci(ω, ·) is convex for every i ∈ N and ω ∈ Ω, has
a Cournot equilibrium.

When firms produce below the thresholds (qi)ni=1 in their best responses, as implied by condition (C), prices are positive
due to (12) and deviations are evaluated in the domain where the inverse demand function is twice continuously differen-
tiable and obeys inequality (9) of condition (A) or (10) of condition (B). This allows us to establish existence of a Cournot
equilibrium using arguments analogous to those of Section 4, where (9) or (10) hold on the entire R+ .

Theorems 2A and 2B lead to the following corollary, that establishes existence of a Cournot equilibrium if there are
thresholds (qi)ni=1 satisfying (12) such that the expected monopoly profit of any firm i under any strategy exceeding qi is

10 The function P (ω, ·) need not (and typically will not) be differentiable at Q (ω). If Q (ω) = ∞ then the inequality is assumed on the entire R+, i.e.,
conditions (A′) or (B′) become (A) or (B), respectively.
11 Here and henceforth, we use the notation h ! g (for h, g : Ω → R+) if and only if h(ω) ! g(ω) for every ω ∈ Ω.
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non-positive, given i’s information. Denote by 0−i the profile of strategies of all firms but i according to which every firm
produces zero in every state of nature:

Corollary 1. There exists a Cournot equilibrium in an oligopoly satisfying the assumptions of either Theorem 1A or Theorem 1B,
if condition (C) is replaced by the following: there exists q ∈ ∏n

i=1 Σ i such that
∑n

i=1 q
i(ω) " Q (ω), and

E
(
ui(·,

(
qi,0−i)) | Π i(ω)

)
" 0 (14)

for every i ∈ N, every ω ∈ Ω and every strategy qi that exceeds qi on Π i(ω).

In Example 3 below we apply Theorem 2A to a duopoly with linear demand, and show that a Cournot equilibrium exists
provided the demand intercept Q is known to both firms.

Example 3 (A duopoly with a linear demand and complete information on the demand intercept). Suppose that n = 2. Let α,
β :Ω → R++ be strictly positive functions. Assume that β is measurable with respect to both Π1 and Π2, the information
endowments of the duopolists. Suppose that for any ω ∈ Ω

P (ω, Q ) = max
{
α(ω)

(
β(ω) − Q

)
,0

}
,

and that the cost functions satisfy (i) and are non-decreasing. Here Q = β. Since β is Π1- and Π2-measurable, both firms
know the demand intercept in every state of nature. This is a crucial difference with Example 1, where Q was not measurable
with respect to the information partition of firm 2, and a Cournot equilibrium does not exist. Here, the measurability of Q
with respect to both partitions leads to a different conclusion.

Let q1 = q2 ≡ 1
2β ∈ Σ1 ∩ Σ2. Clearly (q1,q2) satisfies (12) of condition (C). But 1

2β is the revenue maximizing monopoly
output level, since the firms know β and the demand is linear on [0,β], and thus no firm will exceed 1

2β in any best
response. Therefore condition (C) holds, and the duopoly has a Cournot equilibrium by Theorem 2A.

The following theorem is a counterpart to Theorem 1C when the inverse demand is a non-negative function. It establishes
conditions that guarantee that, when a Cournot equilibrium exists, it is also unique.

Theorem 2C. Consider an oligopoly satisfying conditions (i), (iii), (A′) and (U). Also assume that for every ω ∈ Ω, P (ω, ·) is strictly
decreasing on [0, Q (ω)], where Q is a strictly positive and Π2-measurable function,12 and each ci(ω, ·) is strictly increasing, twice
continuously differentiable and convex for i ∈ N. If a Cournot equilibrium exists (e.g., under conditions of Theorems 2A or 2B), then it
is unique.

In Example 3 we established existence of a Cournot equilibrium for a duopoly with linear demand, provided the demand
intercept Q is known to both firms. If in addition we assume that Π1 is finer than Π2, and that the state-dependent costs
are strictly increasing, twice continuously differentiable and convex, then by Theorem 2C this duopoly’s Cournot equilibrium
is unique. The next example shows that in Theorem 2C we cannot dispense with condition (U).

Example 4 (Non-uniqueness of Cournot equilibrium when no firm has superior information). Consider a duopoly in which Ω
consists of three states, ω1, ω2, and ω3; each one is chosen by nature with equal probability. Firms’ information partitions
are Π1 = {{ω1,ω2}, {ω3}}, and Π2 = {{ω1,ω3}, {ω2}}; i.e., firm 1 cannot distinguish between ω1 and ω2, and firm 2 cannot
distinguish between ω1 and ω3. In all states of nature firms face the same quadratic inverse demand function

P (Q ) = max
{
1− Q 2,0

}
.

Thus, firms know the inverse demand in every state of nature, but have incomplete information about their costs.13 Firm 1 has
a constant marginal cost of 1

100 in states ω1 and ω2, while its marginal cost is 2 in ω3. Firm 2 has a constant marginal cost
of 1

100 in states ω1 and ω3, while its marginal cost is 2 in ω2.
Since in ω3 the marginal revenue of firm 1 is always below its marginal cost, firm 1 produces zero in this state in

any best response. Similarly, firm 2 produces zero in ω2 in any best response. It follows that each firm i’s strategy qi can,
without loss of generality, be identified with a scalar: q1 can be viewed as the quantity x produced by firm 1 in state ω1
(and thus also in ω2), and q2 as the quantity y produced by firm 2 in state ω1 (and thus also in ω3).

12 This condition did not appear in the statement of Theorem 1C. It is needed only when prices are restricted to be non-negative. Indeed, without Q ’s
measurability with respect to both fields, there are counterexamples to uniqueness even if all firms have the same information, see Lagerlöf (2007).
13 Lagerlöf (2007) provides an example of equilibrium non-uniqueness with symmetrically informed firms but with incomplete information on the inverse
demand. Our example shows that knowing the inverse demand does not guarantee uniqueness either.
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We claim that both

q∗ = (x∗, y∗) =
(

3
10

√
2,

3
10

√
2
)

≈ (0.42426,0.42426)

and

q∗∗ = (x∗∗, y∗∗) =
(

7
30

√
6,

7
30

√
6
)

≈ (0.57155,0.57155)

are Cournot equilibria.
Let us show first that q∗ is a Cournot equilibrium. For y ∈ [0,1− x∗] the expected profit of firm 2,

U2(x∗, y) = 1
3
u2(ω1, (x∗, y)

)
+ 1

3
u2(ω2, (x∗,0)

)
+ 1

3
u2(ω3, (0, y)

)

= 1
3
y
(
1−

(
3
10

√
2+ y

)2)
+ 1

3
y
(
1− y2

)
− 2

3
y

100
,

has a (unique) maximum on [0,1 − x∗] at y = y∗ = 3
10

√
2. Thus firm 2 has no incentive to deviate from y∗ to another

strategy in [0,1− x∗]. Now, for y ∈ [1− x∗,1],

U2(x∗, y) = 1
3
y
(
1− y2

)
− 2

3
y

100
.

The maximum of 1
3 y(1− y2)− 2

3
y

100 on [1− x∗,1] is attained at y = 7
30

√
6 ≈ 0.57155. This maximum is equal to 343

6750

√
6 ≈

0.12447, and therefore firm 2 has no incentive to deviate from y∗ (that gives it a payoff U2(x∗, y∗) ≈ 0.15274) to a strategy
in [1 − x∗,1]. Since producing more than 1 would yield a negative expected profit, we have shown that firm 2 will not
deviate unilaterally from q∗. By symmetry, the same holds for firm 1, and thus q∗ is indeed a Cournot equilibrium.

We show next that q∗∗ is a Cournot equilibrium. For y ∈ [1− x∗∗,1] the expected profit of firm 2,

U2(x∗∗, y) = 1
3
y
(
1− y2

)
− 2

3
y

100
,

reaches the maximum value of 343
6750

√
6 ≈ 0.12447 at y = y∗∗ = 7

30

√
6. Thus, firm 2 has no incentive to deviate from y∗∗ to

another strategy in [1− x∗∗,1]. For y ∈ [0,1− x∗∗], the expected profit of firm 2

U2(x∗∗, y) = 1
3
y
(
1−

(
7
30

√
6+ y

)2)
+ 1

3
y
(
1− y2

)
− 2

3
y

100
,

reaches the maximum value of ≈ 0.11798 at y ≈ 0.36792. Hence firm 2 has no incentive to deviate from y∗∗ to a strategy
in [0,1 − x∗∗]. Since producing more than 1 would yield negative expected profit, this shows that firm 2 will not deviate
unilaterally from q∗∗. By symmetry, the same holds for firm 1, and thus q∗∗ is another Cournot equilibrium of the duopoly.

Remark 2 (Infinitely many states of nature). Throughout this paper we maintained the assumption that the set of states of
nature Ω is finite. However, this assumption is by no means necessary, and was made only to simplify the presentation. In
Einy et al. (2007), a discussion paper on which this article is based, the uncertainty is represented by a probability space
(Ω,!,µ), where Ω is a (possibly infinite) set of states of nature, ! is a σ -field of subsets of Ω, and µ is a common
prior. Firm i’s information is described by a σ -subfield !i of !, which is not necessarily generated by a partition of Ω . The
results on existence and uniqueness of Cournot equilibrium remain valid in this more general context. Their proofs follow
very closely those presented here, but some additional assumptions are made, which are not needed when Ω is finite. In
particular, it is assumed that the demand intercept Q is bounded, and that the state-dependent inverse demand function,
cost functions, and their first and second order derivatives, are bounded uniformly in ω on some sufficiently big interval
[0,M].
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Appendix A

Denote by B(Ω) the set of all non-negative real-valued functions on Ω. The following definition of a partial order on
B(Ω) will be needed in the sequel: if g,h ∈ B(Ω), g ! h (respectively, g > h) if and only if g(ω) ! h(ω) (respectively,
g(ω) > h(ω)) for every ω ∈ Ω. Similarly, we will say that g ! h (respectively, g > h) on A ⊂ Ω if and only if g(ω) ! h(ω)
(respectively, g(ω) > h(ω)) for every ω ∈ A.
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A.1. Proofs of Theorems 1A and 1B

A.1.1. Part I: Proof of Theorem 1A
We will show first that for each ω ∈ Ω the profit function u1

ω(·) ≡ u1(ω, ·) of firm 1 has decreasing differences in the first
coordinate, that is, if x1 ! x2 ! 0 and y1 ! y2 ! 0, then

[
u1

ω(x1, y2) − u1
ω(x2, y2)

]
−

[
u1

ω(x1, y1) − u1
ω(x2, y1)

]
! 0, (15)

i.e.,

[
x1P (ω, x1 + y2) − x2P (ω, x2 + y2)

]
−

[
x1P (ω, x1 + y1) − x2P (ω, x2 + y1)

]
! 0.

Since P (ω, ·) is continuously differentiable, this condition is equivalent to

∂

∂ y2

[
x1P (ω, x1 + y2) − x2P (ω, x2 + y2)

]
" 0,

or

x1P ′(ω, x1 + y2) − x2P ′(ω, x2 + y2) " 0,

for every x1 ! x2 ! 0 and y2 ! 0. This condition, in turn, is equivalent (since P ′(ω, ·) is also continuously differentiable by
condition (A)) to

∂

∂x2

[
x2P ′(ω, x2 + y2)

]
" 0,

or

x2P ′′(ω, x2 + y2) + P ′(ω, x2 + y2) " 0, (16)

for every x2 ! 0 and y2 ! 0. However, (16) is implied by assumption (ii) and condition (A) on P .
From (15) it follows that the expected profit function U1 of firm 1 also has decreasing differences in the first coordinate:

for every (q1,q2), ( q̃ 1, q̃ 2) ∈ Σ1 × Σ2 such that q1 ! q̃ 1, q2 ! q̃ 2,

[
U1(q1, q̃ 2) − U1( q̃ 1, q̃ 2)] −

[
U1(q1,q2

)
− U1( q̃ 1,q2

)]
! 0.

Similarly, the expected payoff function U2 of firm 2 has decreasing differences in the second coordinate.
With the partial order ! on Σ i and the pointwise convergence topology on it, for every g,h ∈ Σ i with g ! h the interval

[g,h] ⊂ Σ i is a compact lattice. Now denote the constant function on Ω which is fixed at the level14 Z (respectively, 0)
by the same symbol, Z (respectively, 0), and let strategy profiles of the firms be restricted to S1 × S2 ≡ [0, Z ] ×[ 0, Z ],
a product of compact lattices. Since the state-dependent inverse demand and cost functions are continuous (by assumption
(i) and condition (A)), each function U i is continuous on S1 × S2 in both coordinates.

Now reverse the order in S2, i.e., replace the order “!” with “!′” according to which g !′ h if and only if h ! g. Then
both U1 and U2 exhibit increasing, rather than decreasing, differences. The reversal of order has no effect on continuity of
U1 and U2. Since both S1 and S2 are compact lattices, Theorem 5 of Milgrom and Roberts (1990) implies that there exists
a Cournot equilibrium when strategy profiles of the firms are restricted to be in S1 × S2.15 Denote one such equilibrium
by (q1∗,q

2
∗). If (q1,q2) ∈ Σ1 × Σ2, denote by ri the strategy of i which is equal to 0 on the Π i-measurable set A = {ω |

qi(ω) > qi(ω)}, and to qi on Ac, for i = 1,2. Notice that U1(q1,q2∗) " U1(r1,q2∗) and U2(q1∗,q
2) " U2(q1∗, r

2), as follows
from assumptions (i) and (iii). Therefore

U1(q1∗,q
2
∗
)
! U1(r1,q2∗

)
! U1(q1,q2∗

)

and

U2(q1∗,q
2
∗
)
! U2(q1∗, r

2) ! U2(q1∗,q
2),

since (q1∗,q
2
∗) is a Cournot equilibrium when the strategy profiles of the firms are restricted to S1 × S2. But these inequalities

show that (q1∗,q
2
∗) is actually a Cournot equilibrium without any restrictions on strategies.

14 Recall that Z is a level of output above which each firm’s monopoly profit is negative, in every state of nature.
15 One more thing needs to be verified before applying this theorem, namely that U 1 is supermodular in q1 for fixed q2, i.e., for every q1, q̃ 1 ∈ S1 and
q2 ∈ S2, U 1(q1,q2) + U 1( q̃ 1,q2) ! U 1(max(q1, q̃ 1),q2) + U 1(min(q1, q̃ 1),q2), and similarly for U 2. However, it can be easily checked that this inequality
actually holds as equality.



92 E. Einy et al. / Games and Economic Behavior 68 (2010) 77–94

A.1.2. Part II: Proof of Theorem 1B
The proof is a direct consequence of the Nash existence theorem. First, for each ω ∈ Ω, ui

ω(·) ≡ ui(ω, ·) is concave in
strategies of firm i. Indeed, the second derivative of qi(ω)P (ω, Q (ω)) with respect to qi(ω) is equal to qi(ω)P ′′(ω, Q (ω))+
2P ′(ω, Q (ω)), which is non-positive as follows from assumption (ii) and condition (B). Thus, qi(ω)P (ω, Q (ω)) is concave
in qi(ω), and from convexity of ci(ω, ·) it follows that ui

ω(q(ω)) = qi(ω)P (ω, Q (ω)) − ci(ω,qi(ω)) is also concave in qi(ω).
The expected profit function U i clearly inherits concavity in qi from ui

ω .
Second, following notations of Part I, restrict the strategy set of each firm i to the compact Si = [0, Z ]. As in Part I, U i

is continuous in all coordinates simultaneously on the compact cube [0, Z ]N . Thus, all ingredients for the existence of Nash
equilibrium are in place, with the above restriction of strategies. However, the restricted equilibrium is an equilibrium in
the unrestricted oligopoly as well, which can be shown again exactly as in Part I.

A.2. Proof of Theorem 1C

Since all conditions of Theorem 1B are satisfied, the oligopoly has at least one Cournot equilibrium. We will show that
it is unique.

Let q∗ be a Cournot equilibrium, and pick a firm i. Since

E
(
qi(·)P

(
·,

∑

j -=i

q j
∗(·) + qi(·)

)
− ci

(
·,qi(·)

) ∣∣ Π i(ω)

)
(17)

is maximized (and in particular locally maximized) at qi = qi∗ for every ω ∈ Ω, the Kuhn–Tucker conditions are satisfied:

E
(
qi∗(·)P ′(·, Q ∗(·)

)
+ P

(
·, Q ∗(·)

)
−

(
ci

)′(·,qi∗(·)
) ∣∣ Π i(ω)

)
= 0 (18)

for every ω in which qi∗ > 0, and

E
(
qi∗(·)P ′(·, Q ∗(·)

)
+ P

(
·, Q ∗(·)

)
−

(
ci

)′(·,qi∗(·)
) ∣∣ Π i(ω)

)
" 0 (19)

for every ω in which qi∗ = 0.
Note that for each ω ∈ Ω the function

F (q, Q ) = qP ′(ω, Q ) + P (ω, Q ) −
(
ci

)′
(ω,q)

is decreasing in q and non-increasing in Q when q " Q . Indeed, ∂ F
∂q = P ′(ω, Q ) − (ci)′′(ω,q) < 0 since P is strictly de-

creasing and c is convex by assumption, and ∂ F
∂Q = qP ′′(ω, Q ) + P ′(ω, Q ) " 0 as follows from P (ω, ·) being decreasing and

condition (A). Now suppose that q∗ and q∗∗ are two Cournot equilibria. That F is decreasing in q and non-increasing in Q
implies that one cannot have

(
qi∗, Q ∗

)
<

(
qi∗∗, Q ∗∗

)
or

(
qi∗, Q ∗

)
>

(
qi∗∗, Q ∗∗

)

(inequality in both coordinates and strict inequality in the first coordinate) on any atom Π i(ω) of Π i . This is because
otherwise conditions (18) and (19) would not hold simultaneously for max((qi∗, Q ∗), (qi∗∗, Q ∗∗)). To summarize, any firm’s
equilibrium strategy and the aggregate output in equilibrium cannot move in the same direction:

(
qi∗, Q ∗

)
≮

(
qi∗∗, Q ∗∗

)
and

(
qi∗, Q ∗

)
≯

(
qi∗∗, Q ∗∗

)
(20)

on any element of Π i .
We will next show that every Cournot equilibrium satisfies the equal treatment property, i.e., that strategies of firms of

the same type are equal. Indeed, if q∗ is a Cournot equilibrium, and qi∗ -= q j
∗ where i and j are firms of the same type, then

consider an n-tuple q∗∗ obtained from q∗ by interchanging i and j. Clearly, q∗∗ is also a Cournot equilibrium. However, if
Π i(ω) ∈ Π i is a set on which w.l.o.g. qi∗ > q j

∗ = qi∗∗, then the obvious fact that Q ∗ = Q ∗∗ leads to contradiction with (20).
Thus, the equal treatment property holds in any Cournot equilibrium.

Now suppose that q∗ and q∗∗ are Cournot equilibria in the oligopoly. We will show that they coincide. Due to the equal
treatment property, Q ∗(ω) = |K |q1∗(ω) + |M|q2∗(ω), and it will suffice to establish that qi∗ = qi∗∗ for i = 1,2. If q2∗ and q2∗∗
are not equal everywhere, then there exists ω ∈ Ω such that w.l.o.g.

q2∗ > q2∗∗ on Π2(ω). (21)

Consequently,

q1∗ " q1∗∗ on Π2(ω). (22)

Indeed, if (22) does not hold, there is ω′ ∈ Π2(ω) with q1∗ > q1∗∗ on Π1(ω′). But Π1(ω′) ⊂ Π2(ω) since the information
partition of 1 is finer than that of 2. Thus, from (21), also Q ∗ > Q ∗∗ on Π1(ω′), contradicting (20)).
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We now claim that

Q ∗ ! Q ∗∗ on Π2(ω). (23)

Indeed, both Q ∗ and Q ∗∗ are measurable with respect to the information partition of the more informed firm 1, and thus,
if (23) does not hold, there is ω′′ ∈ Π2(ω) with

Q ∗ < Q ∗∗ on Π1(ω′′). (24)

Strict inequality in (22) on Π1(ω′′) ⊂ Π2(ω) together with (24) would contradict (20), and thus q1∗ = q1∗∗ on Π1(ω′′). But
then Q ∗ > Q ∗∗ on Π1(ω′′) because of (21), contrary to the choice of ω′′. Thus (23) must hold.

But now (21) and (23) contradict (20). Thus, strategies q2∗ and q2∗∗ must coincide almost everywhere. Now, if q1∗ differs
from q1∗∗ on Π1(ω) for some ω ∈ Ω , and w.l.o.g. q1∗ > q1∗∗ on Π1(ω), then Q ∗ > Q ∗∗ on Π1(ω) since q2∗ = q2∗∗, contradicting
(20) again. We conclude that q1∗ = q1∗∗ as well.

A.3. Proof of Theorems 2A and 2B

First, restrict strategy sets of each firm i to be Si = [0,qi]. Note that for every strategy profile q ∈ S1 × · · · × Sn, Q "∑n
i=1 q

i " Q . Hence, strategy profiles in S1 × · · · × Sn have exactly the same properties as if conditions (A′) or (B′) held on
the entire R+ . Thus, just as in the proof of Theorems 1A and 1B (replacing Si = [0, Z ] with Si = [0,qi]), there is a Cournot
equilibrium q∗ ∈ S1 × · · · × Sn in the oligopoly, provided all unilateral deviations of i considered in (2) are in Si .

To show that q∗ is a Cournot equilibrium in the unrestricted oligopoly as well, we now prove that unilateral deviations
of i to strategies outside Si are not profitable. Indeed, if qi is ith strategy which is not in Si, then for some ri " qi, by (13)

U i(q∗
∣∣ qi

)
" U i(q∗

∣∣ ri
)
,

and

U i(q∗
∣∣ ri

)
" U i(q∗)

since ri ∈ Si and q∗ is a Cournot equilibrium when the strategy profiles of the firms are restricted to S1 × · · · × Sn . This
proves via (2) that q∗ is indeed a Cournot equilibrium of the oligopoly without restriction on strategies.

A.4. Proof of Corollary 1

Given a profile of strategies q, consider the strategy ri of i which is equal to 0 on the Π i-measurable set A = {ω |
qi(ω) > qi(ω)}, and to qi on Ac . If ω ∈ A,

E
(
ui(·,q(·)

) ∣∣ Π i(ω)
)
" E

(
ui(·,

(
qi,0−i)) | Π i(ω)

)

" 0

= E
(
ui(·,q(·)

∣∣ ri(·)
) ∣∣ Π i(ω)

)

as follows from conditions (i), (ii), and (14). And if ω ∈ Ac, then qi = ri on Π i(ω), and thus for every ω ∈ Ω

E
(
ui(·,q(·)

) ∣∣ Π i(ω)
)
" E

(
ui(·,q(·)

∣∣ ri(·)
) ∣∣ Π i(ω)

)
. (25)

By taking the expectation over ω in (25), we obtain (13). Existence of a Cournot equilibrium in a duopoly then follows from
Theorem 2A under condition (A′), and in an oligopoly from Theorem 2B under condition (B′).

A.5. Proof of Theorem 2C

Note that if q∗ is a Cournot equilibrium, then

Q ∗ < Q . (26)

Indeed, if this is not case, consider an ω ∈ Ω such that Q ∗ ! Q on Π1(ω) (such an ω exists since both Q ∗ and Q are
measurable with respect to the finest of all information partitions, Π1). If there exists a firm i ∈ K with qi∗ > 0 on Π1(ω),
then i would benefit by switching its output to zero on Π1(ω) and saving its costs, contradicting (3). And if for all i ∈ K
qi∗ = 0 on Π1(ω), then

∑
j∈M q j

∗ = Q ∗ ! Q on Π1(ω). But since both
∑

j∈M q j
∗ and Q are measurable with respect to Π2,

there exists an ω′ ∈ Ω such that Π1(ω) ⊂ Π2(ω′) and
∑

j∈M q j
∗ ! Q (> 0) on Π2(ω′). Accordingly, there exists a firm j ∈ M

with q j
∗ > 0 on Π2(ω′), and just as before this means that j has a profitable deviation from q∗ on Π2(ω′), contradicting (3).

We conclude that (26) holds.
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But if q∗ and q∗∗ are two Cournot equilibria, it follows from (26) that q∗, q∗∗, and all strategy profiles close to them16

have exactly the same properties as if the differentiability condition in (A′) held for all Q ! 0 (i.e., as if (A′) had the
original form (A)). We can therefore show that q∗ and q∗∗ coincide, just as in the proof of Theorem 1C, using the first-order
conditions derived from maximization of (17).
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